Genetic or Pharmacological Iron Chelation Prevents MPTP-Induced Neurotoxicity In Vivo A Novel Therapy for Parkinson's Disease

نویسندگان

  • Deepinder Kaur
  • Ferda Yantiri
  • Subramanian Rajagopalan
  • Jyothi Kumar
  • Jun Qin Mo
  • Rapee Boonplueang
  • Veena Viswanath
  • Russell Jacobs
  • Lichuan Yang
  • M.Flint Beal
  • Dino DiMonte
  • Irene Volitaskis
  • Lisa Ellerby
  • Robert A Cherny
  • Ashley I Bush
  • Julie K Andersen
چکیده

Studies on postmortem brains from Parkinson's patients reveal elevated iron in the substantia nigra (SN). Selective cell death in this brain region is associated with oxidative stress, which may be exacerbated by the presence of excess iron. Whether iron plays a causative role in cell death, however, is controversial. Here, we explore the effects of iron chelation via either transgenic expression of the iron binding protein ferritin or oral administration of the bioavailable metal chelator clioquinol (CQ) on susceptibility to the Parkinson's-inducing agent 1-methyl-4-phenyl-1,2,3,6-tetrapyridine (MPTP). Reduction in reactive iron by either genetic or pharmacological means was found to be well tolerated in animals in our studies and to result in protection against the toxin, suggesting that iron chelation may be an effective therapy for prevention and treatment of the disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease.

Parkinson's disease is a chronic neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. We now report that minocycline, a semisynthetic tetracycline, recently shown to have neuroprotective effects in animal models of stroke/ischemic injury and Huntington's disease, pre...

متن کامل

Different Susceptibility to the Parkinson's Toxin MPTP in Mice Lacking the Redox Master Regulator Nrf2 or Its Target Gene Heme Oxygenase-1

BACKGROUND The transcription factor Nrf2 (NF-E2-related factor 2) and its target gene products, including heme oxygenase-1 (HO-1), elicit an antioxidant response that may have therapeutic value for Parkinson's disease (PD). However, HO-1 protein levels are increased in dopaminergic neurons of Parkinson's disease (PD) patients, suggesting its participation in free-iron deposition, oxidative stre...

متن کامل

In Vivo Evidence of Increased nNOS Activity in Acute MPTP Neurotoxicity: A Functional Pharmacological MRI Study

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin commonly used to produce an animal model of Parkinson's disease. Previous studies have suggested a critical role for neuronal nitric oxide (NO) synthase- (nNOS-) derived NO in the pathogenesis of MPTP. However, NO activity is difficult to assess in vivo due to its extremely short biological half-life, and so in vivo evidence of...

متن کامل

Neuroprotective Effects of San-Huang-Xie-Xin-Tang in the MPP+/MPTP Models of Parkinson's Disease In Vitro and In Vivo

San-Huang-Xie-Xin-Tang (SHXT), composed of Coptidis rhizoma, Scutellariae radix, and Rhei rhizoma, is a traditional Chinese medicine used for complementary and alternative therapy of cardiovascular and neurodegenerative diseases via its anti-inflammatory and antioxidative effects. The aim of this study is to investigate the protective effects of SHXT in the 1-methyl-4-phenylpyridinium (MPP(+))/...

متن کامل

Genetic susceptibility model of Parkinson's disease resulting from exposure of DJ-1 deficient mice to MPTP: evaluation of neuroprotection by Ubisol-Q10.

INTRODUCTION Parkinson's disease arises from a combination of environmental and genetic risk factors. At present neither the curative nor preventative therapies are available; hence, there is an urgent need to develop reliable animal models to facilitate their development. Water soluble nanomiceller formulation of CoQ10 (Ubisol-Q10) has shown neuroprotection against neurotoxin on human neuronal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2003